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ABSTRACT

jDelayed Delta Modulation (DDM) uses a second feedback loop in addition to

the standard DM loop. While the standard loop compares the current predictive

estimate of the input to the current sample, the new loop compares it to the

upcoming sample so as to detect and anticipate slope overloading. Since this

future sample must be available before the present output is determined and the

estimate updated, delay is introduced at the encoding.

The performance of DDM with perfect integration and step-function reconstruc-

tion is analyzed for each of three inputs. In every case, the stochastic stability

of the system is established. For a discrete time i.i.d. input, the (limiting)

joint distribution of input and output is derived, and the (asymptotic) mean square

sample point error MSE(SP) is computed when the input is Gaussian. For a Wiener

input, the joint distribution of the sample point and predictive errors is derived,

and MSE(SP) and the time-averaged MSE (MSE(TA)) are computed. For a stationary,

first-order Gauss-Markov input, the joint distribution of input and output is

derived, and MSE(SP) and MSE(TA) computed. Graphs of the MSE's illustrate the

>. improvement attainable by using DDM instead of DM. With optimal setting of param-

(:) eters, MSE(SP) (MSE(TA)) is reduced about 15% (35).
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I. DELTA MODULATION AND DELAYED DELTA ?bifIATIW)Ilaa inrotionDivjsio

Feedback/quantization schemes, such as Pulse-Code Modulation (PCM), Differen-

tial PCM (DPCM), and Adaptive PCM and DPCM, have been studied by a number of

authors (cf. [1],[3],[5-10], [14] and [15]). These schemes all have the same

goal: Instead of transmitting the entire analog signal Xt, to, they use only

the samples XnT, n=0,l,2,..., to generate and transmit digitally an appropriately

coded (e.g. quantized and possibly block coded) sequence Y n=O,l,2,..., from
nT'

which an analog output Yt, t>O, is reconstructed, which should approximate the

input as closely as possible. The analog input, which we denote by Xt through-

out, is usually taken to be some random process. The sampling interval T>O is

fixed, and we employ (generically) the notation XnAXnT throughout as well.

Delta Modulation (DM) is the simplest of the differential feedback/quantiza-

tion schemes. Using either perfect (p=l) or leaky (0p<l) integration, the

DM YDM of X is generated as follows:

DDM-YOD =0,

0'
DM DM .AbDM n
n+l n n+l n=0,12,..

wher th stp sze >0 nd DM

where the step size A>O and b = sign(X n+- pY n) For tc[nT,(n+l)T), the value

of YDM is appropriately defined, depending on the system and the input, eithert

in terms of the present and earlier values of Yn (predictive reconstruction) or in

terms of neighboring past and future values of Yn (interpolative reconstruction).

When an interpolative reconstruction in used, the reconstruction is delayed until

the required future value(s) of Yn are available. Frequently, the "step-function"

(predictive) reconstruction Yt = Y for te[nT,(nl)T), n=0,1,2,... is considered.

More sophisticated reconstructions will, of course, yield better performance.

It is well known that the size of A determines the trade-off between the

granular, or round-off, error of the system and the slope overload error. In the
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DM (with perfect integration and step-function reconstruction) realization of

Figure 1, E8T,12T] is an interval of slope overload. Note how the DM response

at time 7T, though locally optimal, exacerbates the effect of the slope over-

load suffered immediately afterwards. Clearly, an upward step would have been

preferable to the downward step taken, but, a priori, there was no way of knowing

this. If we knew when a slope overload was to occur we could reduce its effect

by anticipating it and getting a "head start" on it. This suggests the following

scheme, for c>0,

Y =0Y_-0

Y 0 10if IX6,I 5 CA
0 sign(X') if I xl > cA

0 10

and for n=0,l,2,...,

Y PY + Ab
n+l = n n+l"

.sign(Xn -pY ) if X' < cA
n~l nn+l1

where bn 1 Isign(Xn+l) if 1X'+l 1 > cA

Unfortunately, this scheme requires sampling both the signal Xt and its deriva-

.' tive Xt . The following scheme is similarly motivated but requires sampling Xt

only, for c>0,

toY-1 0 ,

: |'o if Ix11[  _ CA ,
Y =0

A sign(X if 1X11 > cA

and for n=0,1,2,...,

Yn+l =pYn + Abn+11

= {sign(Xnl- PY) if IXn+2 - YnI S cA
where b n+1l

.sign(Xn+ 2-PYn) if IXn+ 2 - Yn > cA

J.

iJ

S...
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We call this Delayed Delta Modulation (DDM) because Y is not determinedn

umtil Xn+l has been sampled. Thus, delay i: introduced at the encoding step

(and, if we wish, at the decoding step, i.e. the reconstruction, as well).

To facilitate the analysis and allow comparison with the results of Fine [5])

Slepian [15] and Masry and Cambanis [14] we henceforth consider only perfectly

integrated DDM, and so take pul, with the step function reconstruction,

Yt= YnT for te[nT,(n+l)T), n=Ol,2,.... Figure 1 includes both the DM and

(c=l)-DDM outputs of the given input.

Note that setting c = reduces DDM to DM. This enables us to check our

computations against the literature. When we set c = 0, the DDM output is just

the DM output shifted to the left one sampling interval T, i.e., DDM yDMn n+l

A system using greater delay and additional comparisons would undoubtedly

outperform this basic DDM scheme. Unfortunately, adding non-linear feedback

loops to non-linear differential quantization schemes greatly increases the

difficulty of their analysis. *"1
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II. STOCHASTIC STABILITY OF DDM

Several types of "stochastic stability" have been considered for feedback/
A

quantization of random inputs. Henceforth, we let en = Xn-Yn denote the sample

point error (at instant n).

Gersho [ 8 ] (Hayashi [ 9 3) has shown, for DM (with perfect integration) of

a stationary and continuously distributed input that has finite variance and a

rational spectral density (of an input that has i.i.d., zero-mean, finite vari-

ance increments), that

(i) the distribution of (X nY n ) (of e ) converges weakly to a unique sta-n n n

tionary steady-state distribution irrespective of the initial (output) state,

and

(ii) -nk=O Elek1 is uniformly bounded, and Elel < , where e is the limit

in distribution of en

Kieffer [12] considers several other types of stochastic stability. Letting
D -I7n-1 x o0X he shows that for DM of a stationary input n-l f Y

Xk =(X.kXk+l,.) aoayipt 'kO ~k k

converges almost surely as n for every bounded measurable f.

A stronger, and more useful, notion of stability is what may be called "rth

moment stochastic stability." We say an analog-digital-analog system is rth

moment stochastically stable when for an input that is either stationary with

finite rth moment or has i.i.d. zero-mean finite-rth-moment increments
. D

(a) en =e, whose distribution does not depend on the initial state and is

stationary for the sequence, and

*.I1 (b) limnreki = Eleir < . a.s.

"•n k=O

It is well known that DM, and DPCM, with leaky integration satisfy (a) and gene-

rate a uniformly bounded output. Thus, for a stationary input they satisfy (b)

th
trivially and so are r moment stochastically stable. For systems with nerfect

integrators (b) is far more difficult to obtain and may be replaced by

* *. . . . .. . . . . . .
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(b') lim Elenir Eleir < , or

(b") lim n-lnIek r Eleir
n- k=O

or even for some v<r,
n-1€

(b"') lim n leI v = leIV ..

n-',0 k=O

The averagings used by Gersho [ 8 ) and Hayashi [ 9 ) can be easily extended to

show that DM, and DPCM, with perfect integration satisfy (b"') for v=r-l. In

Theorem 1 below we present a uniform bound on DDM - yDN Hence, DDM with

leaky (perfect) integration satisfies (b) ((b'") with v=r-l), and so is rth

moment (v=(r-l)th moment) stochastically stable whenever (a) holds.

Henceforth, when we say simply that DDM is stochastically stable we mean

only that (a) is satisfied. In the following subsections we will show that DDM-

with prefect integration is stochastically stable. The modifications needed to

show that the same is true for the leaky integrator are straightforward.

In order to establish the results quoted earlier, Gersho [ 8 J embeds both

the input X and output Y in a "state vector" S , while Hayashi [:9 3 considersn n n
e Xn -Y the predictive error. They show that Sn (e*) is Markovian, and that

n'ln'1 EIk Y k n ln-l1 Eleki ) is uniformly bounded. Thus, the sequence of ave-

raged distributions of Sn (e*) is tight, and so Sn (e*) has a stationary distribu-
n nn n

tion. By verifying certain conditions on the transition function of Sn (en), it

-follows that the distribution of S (e*) converges weakly to a unique (stationary) 4

n n

steady-state distribution irrepsective of the initial state S0 (e*). Our approach

parallels theirs.

The following uniform bound is very useful.' From it we obtain tightness and

finiteness of moments for DDM as a consequence of the same for Mi. This bound

can be shown to be tight for c0O, but the argument will not be produced here.
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Theorem 1 For any given input, perfectly integrating systems (P=1), and c o, we

have, for all n,

n n "

Proof: Let D (DDM) _ DM naO. Clearly (i) D= 0, (ii) D= -A,O, or A,n= - 02, ~
and (iii) Vn+1  Dn - 2A, Dn, or D n 2A, n2l.

The bound will be established by contradiction. Let nO < m be the smallest

value of n s.t. IDnI > (3+c)A. Then ID I = (d0+2)A, where the integer do satis-

fies d0E(l+c, 3 c]. Without loss of generality, assume

D (d0+2)A . (2.1)

Let n denote the largest value of n less than n0 such that D = (d0-2)A.

Then

D = (d-2)A and D = d0A, (2.2)
n 0 n 1 0

and so bn+l = 1 and bDM = -1. This yields {(X >+2Yn +cA) u CIXn +2-Yn1 < CAn n n1 +2 n1

and X >Y l n{X <YDM}, and since Y =Y + (d0 2)A YDM, this reduces
n 1+1 n 1 n 1+1n 1n 1 n 1 0ni

to X > Y + cA and X :5 Yn. From the first of these inequalities and
n +2  n1  n 1  n1

(2.2) we derive

x 2  DM + (d 0-2) + cA

> yDM + (l+c-2)A + cA
n1

y DM _ A + 2cA
n
I

DM DM
n nl+l + 2cA

2tyDM
n +1

n- 1 •

., 7.: . .' '.'.. . '. .,." '. -: . . -. ". . - . " .... • - _ -
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DM
Hence bnl+2 1. But by (2.1),D = doA. Thus bnl+2 =1 as well.

This implies that

x > yDM + d0A - CAXn +3 nI +I

DM

> y nl + (I+c)A -CA

a y DM +A

n 1+1

2! yDM
n +2
1

Hence bDM = 1 But by (2.1), D = d A. Thus b = las well.
ni+3 n 1 3  0 n 1+3

Repeating this series of steps (no-n1) times yields D = DoA , in contra-0l 0'n
diction of (2.1).

A. Stationary input

We show first that DDM is stochastically stable for an input X t2O, thattvi
is either

(i) stationary Gaussian with rational spectral density, or

(ii) stationary Markovian with finite variance, uniformly bounded and every-

where positive multivariate densities of all orders, and uniformly boun-

ded conditional densities of Xn+l given X X0 .

Processes of the former type satisfy all but the Markov requirement of the latter

type. However, as noted by'Slepian [IS], they can be embedded as the first com-

ponent in a stationary Gauss-Markov row-vector process Xt', t!O, that is of the

latter type. Thus, with a slight abuse of notation, we take X to be a (possiblyn

one-dimensional) row-vector that satisfies the conditions in (ii) and we put

A x n=0,1,2, (2.3)
n (Yn' n+l' n+2'. I0
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1. {S I is Markoviann

From the definition of DDM we see that

Ynl = gCYn' Xn+l' Xn+2) = g(Sn) ( (2.4)

and so

Y n h hn(Xn+11" . .IXo0) "

Hence, with probability one,

S n+1 Sn" "s0) (Yn+1X x n+2 )jn+3) (Yn"'" 'YoV n+2""' X0)

(Y n+l' xn+21 n+3l[CYn, n+2,...' 0)

=(Y
n+l n+2'I n+3) (Yn' n2' n+l)

S~j= n+ [Is n ,

and so S is a Markov process.n

2. {. has a stationary distribution G

DMGersho [8 ] has shown that the averaged distributions of Y n are tight, and,

as a consequence of Theorem 1, the same holds for YDDI. By stationarity, it is also' n

true of X n Thus the averaged distributions of the components of Sn are tight,
n n

and hence so are the averaged distributions of Sn
A -I n-1

Let F denote the distribution of Sn, and Gn = n k F Conditioning
n Ionndtinin

backwards gives us

F n+I(A) = f P(Sn 1 cA!sn=S)dFn(s).

From (2.3), (2.4), and the fact that X is Markovian it follows that the transition

function P(S n+lAISn=S) does not depend on n. Hence we may write Fn + = TFn.

For a set A, let DA denote the set of points s such that P(SnicAISn=S) is

discontinuous, and let DA denote the set of points within 6 of DA. The following

result is Gersho's [8 J, but the proof has been simplified.

,_ ," " o ." * - - - " -o - - . . - • . " - . , " , - " , . - , . .. . -. . " . . . .- . • . . ,



11.6

Theorem 2. Let Sn be a Markov process with averaged distributions Gn and tran-

sition function P(Sn+icAISn=s) that does not depend on n. If

(1) the sequence Gn is tight, and

(2) for any open set A, there exists a function cA(6) + 0 as 6 - 0 such

that P(SnEDA)  cAC6 ) for all n,n A~ cAC

then Sn has a stationary distribution.

Proof: Because {G n  is tight, there exist a subsequence Gni and a distribution G

such that G G. But TGn =G -F) and so TG G.
nn n no n. I

From (2) we have Fn (Di) < cA(6) for all n, and so Gn(DA) 5 cA(6). Since DA

is open, G(D A) : cA( ) so that G(DA) = 0 for all A open.

Theorem 5.2.iii on page 31 in Billingsley [2] now gives us TG (A) -i TG(A) for -.

D n.
all A open, and therefore TG ->TG. Hence TG = G. u

In order to apply this theorem, it remains only to show that the second con-

dition is satisfied. The following lemmas prove that we may take CA(6) = c(6) =8M6.
A

Lemma 1. For DDM, for any Borel set A, 6<A, and all n, we have P(Sn DA) 5 8M6,

where M is a uniform bound on the conditional density of Xn+, given Xn,..., X0 .

n
Proof: Observe that for DDM, for any region A, DA c D = D where

Di = Qs = i, and (1(l) = iA * cA or s(l)= iA)J, and thus
1 iss2( 3) =ia 2
6 6 Go
D A c fi = U1...0 Di. Since for 6<A, W

P(SneD) = P(Yn = iA, X n 2-iA-CA'<6) + P(Y = iA, Ix
n3. t+1C< n nX2-iAcAI<6)

+ P(Yn'iA, IXn+-iAI<6) ,

while

P( ,Ix -iAI) ( iIAb ,x
P(Yn , nl <) = (Yn-l=(i1)A, bn -1, Xn+l-iA<)

+ P(Y n l(i+l)A, bn -1, IXn -iA<6)

P (Yn_ (i..X)A, lXn~l-ial< ) P(YnI(i+I)A, Ixn iAI<6),n-i n-lnl

L-7J
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we see that for 6<6,

P (SnDA C ."{P (Yn=iA, I Xn+-iA-cAI<6) ) (Yn iA, IXn+-iA+CAI<6)
J= C (2.5)

+ P(Y n=(i-l)A, IXn+l-iAI<6) + P(Yn l=(i+l)A, [X -iA[<6)}.
n-lln<6)1.+

But for any kK, and m,

P(Ym=kA, IX2-K 1<6) = P(X m-K J < 61Ym=kA)P(Ym=kA)Mm+2 m+2 n i

s 26M - P(Ym=kA) (2.6)

by (2.4), Lemma 2 below, and assumption. Hence, combining (2.5) and (2.6) we ob-

tain our result. 0

In the following lemma, U and V are i- and j-dimensional random vectors.

respectively, and X is i-dimensional Lebesgue measure.
Lemma 2. Suppose M < - a.e. Then for all Borel AcER and B j]Rj

P(UcAIVcB) - MX(A).

Proof: P(UEA,VcB) = ff fUv(UJV)fv(v)dvd-u

< f Mfv(V)dvdu = MX(A)P(VEB).
AB

3. {Sn} "converges" in distribution

Doob [ ; Theorem 5] gives, for a Markov process, conditions sufficient for

a stationary distribution to be the (periodic or aperiodic) steady-state distri-

bution. It is a simple matter to verify that these conditions are satisfied.

(cf. Gersho E 8] and Gerr [ 7)). Since the sequence {A Y n  alternates between

odd and even values, the period two result obtains (cf. Gerr [ 7] for more de-

tails).

B. Ii,d. increments input

When the innut to a DDM system has i.i.d. increments, such as a Wiener pro-

cess, the joint distribution of input and output clearly cannot converge.



• .- " .- •a. .. " •" -
°  

-" - " .• , . - • -*,•- -. -- - L . . . L •

11.8

However, when the perfect integrator is used the predictive error e* X -Yn n+-l n

does converge in law.

AWe let I f Xn+l ,Xn n=0,1,... and assume that the In'I form an i.i.d. se-
n ~ lnl

quence with mean zero, variance T, and bounded, everywhere positive density fI"

These assumptions are satisfied by the standard Wiener process.

1. {e*} is Markovian.--- n-

It is easy to see that

e* In+2 + e* Ab (2.7)
n~l n2 n n+l

where
b sign(e* + I(e* + sin (e*I

bn+1 = n In 2)l(cA,o)en 1n+2) + sign(en)l[_cA,cA](en n+2

n n+2

Thus

e* ff g(en, 1  (2.8)nl n'n+2)

and so

e= hn(In~l,..., I1) . (2.9)

Since the I 's are i.i.d, it follows that e* is Markovian.n n

2. {e*} has a stationary distribution.

Hayashi [9 ) has shown that for DM1 of Wiener process input, the sequence of

DM >. I sesl enta
averaged distributions of e* is tight for all A > 0. It is easily seen thatn

this result can be extended to include any process that has zero-mean, finite

variance, i.i.d. increments. Since e*-e*DMi = YDDM-Yn 1 (c+3)A by Theorem
n n n ~n (c3AbThoe

1, the sequence of averaged distributions of e* is tight for all A > 0.n

Letting F denote the distribution of en, we again have that

n n

Fn~ (A)= f P(e*, c Ale* =s)dF (s)
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From (2.7-9) we see that the transition function P(e*+lE Ale= s) does not depend

on n, and so we may write Fn+1 = TFn. It follows from (2.9) that e* and I are
nfln n+2

independent. Since b = *1, from (2.7) we see that we may take c(6 ) = c(6) =

2M6, where M = sup fI" Thus both conditions of Theorem 2 are satisfied and e*
V n

has a stationary distribution G.

3. {e*') converges in distribution.

Once again the conditions of Doob's Theorem are easily verified (cf. Gerr

[ 7 ]), but in this case the aperiodic result obtains.

C. I.i.d. input

We show here that if the input Xn is a discrete time i.i.d. process that has

bounded everywhere positive density, the joint distribution of input and output
A

converges weakly. Let S = (Yn' Xn1 , Xn2
nn n~'n+2

1. {S I is Markovian.

This follows from Subsection A.1, as Xn is both stationary and Markov.

2. {S .} has a stationary distribution G.

Because X is stationary, Subsection A.2 implies that the averaged distribu-
n

tions of Sn are tight. As the Xn are independent with bounded density the second con-

dition of Theorem 2 is also satisfied. Hence S has a stationary distribution G.n

3. {S } "converges" in distribution.

Once again, the conditions of Doob's Theorem are easily verified, and in this

case the period two result obtains.

- *7



III. DDM OF DISCRETE TIME I.I.D. INPUT

To analyze the response of DDM to a discrete time i.i.d. imput Xn, n=O,l,2,...,

we adapt the approach taken by Fine [5 ] in his study of DM of this input. First, j
we find the stationary joint distribution of input and output. This is done by

solving the Chapman-Kolmogorov Equation (CKE). Then, assuming that the input has

a standard normal distribution, we compute the asymptotic sample point mean

squared error (MSE(SP)) as a function of c for several values of A and as a func-

tion of A for several values of c.

Recall from Section II.C that when we write

Fi(x) _ lim P(Y = iA, X n-x)
n

we in fact mean

Fi(x) = lim {P(Y = iA, X :5x) + P(Y = iA X n x)},
n nn l n+1

In the following, all expressions will be written using the simplified, rather

than the precise averaged, form.

The input Xno n=0,1,2,..., is assumed to be i.i.d. symmetric, with finite

second moment and common distribution H that has density h.

A. Analysis.

1. The asymptotic distribution of (Y , X )4

Let F (x) A limn P(Y =iA, X <X), i=O,*l, *2,.... The existence of these
1 n+1

weak limits was shown in II.C. In (3.1) we show that these distributions have

densities and may be written in terms of the input distribution and the constants 4

= limo P(Y iA), and Ft(i6), for which we derive an infinite system ofPi lin P(n = i),adq

homogeneous linear equations (3.2-5) that is solved by the Method of Reduction.

By conditioning backwards we obtain a CKE for F?:
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FW(x) = lim[P(Y 1 Xn<X) P(Y (il)A, bn = -1, Xn)<X)

1n-1 = ilA n ='n~r n-1 i +IA n 1,xn15]
n

= Pi[H(x)-H((i-I+c)A)J + + (pi_l-qil)[11(min(x,(i-l~c)A)) - H((i-I-c)A) ]

+ PiiH(min(x,(i+l-c)A)) +qi+,[H(min(x,(i+l+c)A)) - H((i+l-c)A)] (3.1)

where [a] + = a if a>O, [a] + = 0 if a<O.

It follows from (3.1) that F. has density ft, and so the endpoints neglected

in the derivation are of no concern. Specifically, we can write f.(x) =a*(x)h(x),

where h is the density of H and the step function a* is easily identified by (3.1)
1

(see Gerr [ 1). It is also clear that the constants {piqi}l determine the

distributions {FI(.) } .

By letting x - in (3.1) we obtain

= [ - H ( ( i - l - c ) A)  - qil[H((i-l+c)A)-H((i-l-c)A)]

pi4iH((i+l-c)A) + qi+[H((i+l+c)A)-H((i+l-c)A)] , (3.2)

and taking x = iA yields

qi= Pi[H(iA)'H((i - lc)A)]+ + (Pi-qi-I)[H(min(iA,(i-l~c)A))-H((i-l-c)A) ]

+ pi+1H(min(iA,(i+l-c)A)) + qi+l[H(min(iA,(i+l+c)A))-H((i+l-c)A)+ . (3.3)

The recursions (3.2 and 3) define an infinite system of homogeneous linear

equations in {pi,qii=_ In addition, since the DDM system and input are sym-

metric, the output is symmetric, i.e.

P--Pi (3.4)

and since the input has density,

q-i a lim P(Y = -iA, X n+1  -iA) = lir P(Y = iA, X n+ I  iA) = pi - qi. (3.5)
n n

The infinite homogeneous system given by (3.2-5) is supplemented by the fol-

lowing non-homogeneous normalization requirements. Due to the periodicity of

the output and the limiting stationary distribution
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X Pi -- l Pi '(3.6)
i even iodd

and so from (3.5), 

(3.6.1)
i even iL Odd

The system given by (3.2-6) is solved by the Method of Reduction (see the

Appendix), and we recover the distribution F? using (3.1).
1

2. The asymptotic (mean square) sample point error.

As noted by Fine [ ],

F e(x) _ lim P(e n-x) = lim P(X n-Y nx)
n n (3.7)

lim P(Y n=iA, Xnx+iA) = Fi(x+iA)
ni 1

where Fi(x) = limn P(Yn = iA, X 5x). The distributions {Fi(.)} =  are derived
1 ln 1 i=-CO

in terms of the distributions {F (.)}. _- by
1 1=-

Fi(x) t lim[P(Yn 1 = (i-l)A, bn = 1, X -x) + P(Yn-I = (i+l)A, b = -1, Xn-<x)]
n

FL _(x)[l-H(i-l+c)A)] + [F 1_ (x)-qi_l
]  [H((i-l+c)A) - H((i-l-c)A)]

+ F+I (x)H((i+l-c)A) + F. (min(x,(i+l)A))[H((i-l+c)A) - H((i-l-c)A)] (3.8)

Since F has density fP, it follows from (3.8) that F. has density fi, which for
1 1 1

c-!l (which turns out to be the region of greatest interest) is given by

fi(x) = fll(x)H((l-i-c)A) + flI(x)H((i+l+c)A), x<(i-l)A,

f. _l(X)H((l-i+c)A) + f? l(X)H((i+l+c)A), (i-l)A-<5x<(i+l)A

f?- (x)H((i-l+c)A) + f l,(x)H((i+l-c)A), (i+l)A-<x.

Substituting the expressions for fP we find fi(x)=ai(x)h(x), where the step

functions ai(x) are given in Gerr [ 7 ].

Having found f. it is straightforward to derive the asymptotic sample point

A
mean square error. Letting e denote the limit in distribution of en  nYn

from (3.7) we derive

. .
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LSE(SP) = _ X2fe(x)dx = j_ x2f(x~iA)dx = i Jo (x-iA)2fi(x)dx

1-2A i . xfi (x)dx A 2Y 1 2P (39)1 i

B. Numerical results and discussion.

Recall that the infinite system (3.2-6) is solved by the Method of Reduction.

This involves setting pi=O=qi for jii > I, solving the resulting finite system

exactly, and taking as the solution for the infinite system the limit as I- of

these "approximating solutions." The Theory of Majorants, developed by

Kantorovich and Krylov [11), and presented in the Appendix, assures us that the

Method of Reduction results in solution of the system encountered here.

We calculate MSE(SP) when the i.i.d. input is standard normal. Regarding

the Method of Reduction, for all A and c, the value of MSE(SP) computed when

I = 4 agreed with the I = 5 value to about four significant figures. In Table I

we exhibit the output level probabilities pi, i=O,...,5 for DDM and DM with op-

timal parameter settings. Note that these probabilities decrease rapidly,

facilitating the numerical technique. In addition, our computations for DDM with

large c (i.e. DM) agree with Fine's [5 ] for DM to nearly four significant figures.

In Figure 2 we plot MSE(SP) as a function of c for A = .6, .75 and .9. Ad-

ditional computations have shown that (A,c)op t = (.745, 2.29) is the pair of

. values at which MSE(SP) is minimized and equals .5691. Fine [S ] found that for

DM, A = .77, giving MSE(SP) = .6402. Thus, the reduction in MSE(SP) of opti-
opt

mal DDM versus optimal DM is about 11.1%. Note that the change in the value of

the optimal A is quite small. However, recalling how the size of A determines

the trade-off between round-off and slope overload, it is not surprising that

the optimal A is smallerforDDM than for DM. The additional DDM loop is designed

to mitigate the effect of slope overloads, which previously could only be done

through the use of larger A.



The shape of the curves in Figure 2 is typical of the response of DDM for

the inputs considered. However, for i.i.d. input, the performance of DDM is

uncharacteristically poor when c is small. This may be rationalized as follows:

When c=O, Yn tracks Xn+ 1 , but MSE(SP) is measured relative to Xn, which is inde-

pendent of Xn+.* We expect that when the input is (more) positively correlated,

smaller settings of c will result in greater reductions in MSE(SP).

Fine [ 5 ] has pointed out 1-2/n w .3634 is a lower bound for MSE(SP) of a

predictive feedback/quantization scheme that has a fixed two-level quantizer

when the input is i.i.d. standard normal, and that this lower bound is attained

only by PCM with quantizer output levels * (2/it) * .798. This is not sur-

prising; PCM is non-differential, and so may have independent output values,

but DM is differential, hence its output values are necessarily correlated.

However, this lower bound does not apply to systems that use delay, such as DDM,

or perform "tree searches" (cf. Chan and Anderson [3 J), i.e. are interpolative.

In Figure 3 we plot MSE(SP) as a function of A for c = 1.5, 2.25, 3., and 8.

(which corresponds to c = , i.e. DM). The relative lack of dependence of

?SE(SP) on A for DM of i.i.d. standard normal input was noted by Fine [5 J, and

we see that a similar result holds for DDM. In addition, we find the improvement

of DDM with near optimal c (=2.25) over DM to be almost uniform with respect to

A in its range of interest.

A C2For the input considered here, the increments 1n = Xn Xnn have E2I 2

2
and E(In ) = E(-Xn) = -1, so that adjacent increments have correlation

n~l n n
-1/2. When adjacent increments are more positively correlated, slope overloads

should be more prevalent and we would expect even greater improvement in the per-

formance of DDM relative to DM, and for lower settings of c as well.

-- - - - - - - - - - --. - A .-- .- -o, - * L---.'-~ - ~~ a t .n ~ l ~ a



IV. DDM OF WIENER PROCESS INPUT

The analysis of the response of DDM (with perfect integration) to Wiener

process input parallels that of Janardhanan [10] for DPCM with matched integra-

tion of stationary first-order Gauss-Markov input. In Subsection A the limiting

distribution of the predictive error is shown to satisfy an integral equation ob-

tained by conditioning on the preceding step, and the asymptotic sample point

and time-averaged mean square errors are expressed in terms of this limiting dis-

tribution. In Subsection B we present computational results.

The input Xt, t2O, is the standard Wiener process. The increments

X n X n-l' n= ,..., are i.i.d. N(O,T), and we let *T denote their density.

A. Analysis

From Subsection II.B we have that the distribution F*(x) = P(e*<x) has densityn n

f* and converges weakly to a distribution F* having density f*. f* is shown to
n

satisfy an (CKE) integral equation (4.2), which is solved by Galerkin's Method

(see the Appendix). The joint density of e* and e, the limits in distribution of

e* and e = X -Y , respectively, is then expressed in terms of f* in (4.3). This
n n n n

yields the limiting distribution of e n(t) = XnT+t-Yn, tE[,T), (4.10), enabling

the calculation of the asymptotic predictive, sample point, and time-averaged

mean-square-errors (4.13, 14, and 16).

1. The density f* of e*.

Since the I 's are independent, from (2.9) we have that e*_ and I are
nt n n+l

independent. Thus, using (2.7) we derive

F*(x) = P(e*_ !x+L-I b =l) + P(e*_ x-L-In 1 b n=-l)

n n-1 n~l' n n- 15x T

r {[F*.(x+A-u) - F_

+ [F*_ (min(x+A-u,cA-u)) F*. (max(O,-cA-u))] + + F*_ (min(x-A-u,-cA-u))

+ [F 1 (min(O,cA-u,x-A-u)) -nF_(-cA-u)]+ (U)du (4.1)

n "n r~p-cA--I-.-4-.(- - -.- (4.1
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Since F* is the stationary distribution for e* it satisfies the recursionn

(4.1). Substitution, differentiation, and a change of variables yields

f*(x) = {[l(x>(c-1)A) + I(-(cI)A -x < (c-l)A) r]T(x A-v) (4.2)

+ [l(x<-(c-I)A) J + * l(-(c-l)A < x 5 (c+l)A) fO ]JT(x-A-v)}f*(v)dv.

As f* is a density, it also satisfies

f f* = 1 and f* > 0 . (4.2.1,2)

From (4.2) we see that since f* is integrable, it is bounded, and hence

square integrable, i.e. f*cL 2 (Leb). In Subsection B of the Appendix we show

that the integral operator A given by the right hand side of (4.2) is bounded

and linear on L2 (Leb). Thus f* is an eigenfunction of A having eigenvalue one.

We now show that the manifold of integrable solutions to f=Af is one dimen-

sional.

Theorem 3. Suppose f is integrable and satisfies f=Af. Then f-rf*, where

r=ff.

Proof: Examining the kernel of A, we see that since f is integrable, it is

bounded and continuous, except possibly at the four points * (c*l)A. Let f and

f be the positive and negative parts of f and set p=ff+, q=ff- and r=ff. Then

f=f+-f" and p-q=r. In Section III.B it was shown that TnFo=FnoF* for any ini-

tial distribution F0 . Thus for all bounded continuous functions h, fhAnf pfhf*

and JhAf=lqfhf*, so that JhAnf-rfhf*. But Anf = An-lAf = An'lf = f for all n.

Hence for all bounded continuous functions h,

fhf = rfhf*

and since f and f* integrable and continuous except possibly at four points,

* f - rf* a.e. . 0

The unique integrable solution to (4.2) is found by Galerkin's Method

(see the Appendix).

- :;',',...... -....."--... ".. . ...-,-.-. ".'" " ".. : •. . -' , ." " .. "
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2. The joint density of e and 0*.

6Let F (u,v) IV P(e :5u, esV). By a sequence of steps similar to those used
n n n

at the beginning of the previous section we derive

F (u'v) = r {.FF* (min(u.A,v+A-w)) -F*_ (cA-w)] +
n n~ 1- n-i

+F*(min(cA-w,u+A,v+A-w)) -F*_ (max(O,-cA-w))J+n 1 n-i

+ F*_ (min(-cA-w,u-A,v-A-w))
n-i

+ [F*_ 1 mnOc-~-~--) + F*_ (-CA-w) ])dO.T.(w)dw.
nl S J J J n-

From (2.7 and 9) and II.B.3 we have that F* ->F* that has density f*. As
n

F* is uniformly bounded (by one) and *T is integrable, it follows that F con-n Tn

verges weakly to a distribution F having density f. The joint density f of e

and e* is then given in terms of the density f* of e* by

f(u,v) =f(+)lv( A)+ -(+1 :v: C )1(>A (4.3)

The density f(-) of e is the marginal

f(u) =J f(u,v)dv. (4.4)

3. The sample point and time-averaged mean square error.

Having derived the joint density of e and e*, we may now calculate the time-

averaged mean-square-error

MSE(TA) = Tf0 E(e2(t)dt

*.where e(t) is the weak limit of en (t) =XTt -n

*Let F (x;t) 1_ P(e (t):5x). Thenn n

F~ (x;t) =ff P(en (t!SxlIn u, =* v)dFn (u,v) .(4.5)

However,

P(e (t):Sxle uu15uv) J P(e (t)5xle u,e*=v,Y iA)P(Y Mi), (4.6)
n nu n n a n = i
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and

P~ ()5xen~~*=, =iA) = P(X nTl:x~itiIX n=u~iA X =v~iA,Y i) (47
P~(t~~nuenvY Tln (n~l)Tn= A- (47

= P(X <5x~iA IX =u+iA X =v+iA)nT~t nT '(n+l)T

since Y is a functional of X nIT ' x'

Let B Mt=X - [(1 - !~Xt + I for tcfIO,T] and n=0,1,2,.n nT~t T + F (n~l)T

*Clearly, for all n, B nis a zero-mean Gaussian process with B n(0) = 0 = B n(T).
n n n

Furthermore, it is easily shown that E(B (s)B Mt) = SOl - 1::)for O!5s~t:5T. Thusn n T

for all n, B n(t), te[0,T], is distributed as a Brownian Bridge on FOT], which

*we will denote by B T(t). In addition, since E[Bn(t)X ]T = 0 = EEB n ( I

for all n and tc[0,T], B (t) is independent of both X and X This givesn nT (n+l)T'

us

P(X Tt :x+iAJX T=u+iA, X (n~l)TV1A)

=P(B n (t):5x+iA-[ Il -)(u+iA) +;F(v+iA)]I x nT=u+iA, X(nl)Tv+iA)

=P(8 (t)<5x-E (l - )U +4Fv ) = P(BT )~(1 - -U +;Fv ), (4.8)

and combining (4.6-8) that

P(e (t)5xlenu,e*=u) = P(B (t)!5x-[(l - t)U + tv). 49

The distribution on the right hand side of (4.9) is bounded, continuous in u

and v, and absolutely continuous in x with respect to Lebesgue measure. Thus, we

may substitute (4.9) into (4.5) , pass to the weak limit on n, and differentiate

with respect to x to obtain the density f(.;t) of e(t);

f(x;t) = ffft(X-[(l- t U + t I)dF(u,v) ,(4.10)

where ftis the density of BT t). This enables us to calculate

E~e 2(t)) =fffx 2f (x-E(l- t) ~v])dxdF(u,v)
tT T

=fff(x+(l -~) ) fl d
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2 t 2 2 t t 2 2
= ELB2(t)] + (1-) E(e ) + 21{ -T)E(ee*) +() E(e*2) (4.11)

with E[B2(t)] t(l-j). Finally, substituting (.11) into the definition for

NSE(TA), we perform the integrations over time to obtain

1 2 2 T
MSE(TA) [ [E(e2) + E(ee*) + E(e* )  + (4.12)

A6
For DM we see that e* = e + I, where I is N(O,T) independent of e. Thus

for DDM with c =

1 2 2 T 2 T
MSE(TA) = [E(e2) + E[e(e+I)] E[(e+I) ]] + 2)

which is Equation (11) in Masry and Cambanis 1141

Using Subsections A.1 and A.2, where the densities of e and e* as well as

their joint density were derived, it is a straightforward task to calculate

2 2
MSE(SP) = E(e2), MSE(PR) = E(e*) and E(ee*). The simplest calculation is for

MSE(PR). By definition,

MSE(PR) = f*x)dx . (4.13)

From (4.3 and 4) we have
MSESP) u uf(u)du = f(u,v)dvdu

MES)=2 rr u2A f C

= MSE(PR)+A 2+4A[ ,  + .OCA]u f*(u)4(v-u)dvdu

= SE(PR)+A 4A'O[2€{(---- luf*(u)uu , (4.14)

where € is the cumulative standard normal distribution function. From (4.3) we

have

E(ee*) = _r_ uv f(u,v)dvdu

= MSE(PR)+A2+2A{Tf cA =OcA(uv)f*U)C(v-u)dvdu

= MSESP)-4A f(E.4,t)f*(u)du (4.15)

T

Substituting (4.14) and (4.15) in (4.12) yields
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2A2 T -CAMSE(TA) =s MSPR) + A -T 2AEfj- A . rorA .=S(A SEP)+- + + 2AI f + ._..cA 3(u + f*(U) TCV-u)dvdu
J.oCA~ 3 T

2A2  T A -C{(AU A+u

2E(PR) {+r A+u 2u[24(- ) -1I)f*(u)du. (4.16)

B. Results and Discussion

Using (4.13-16) we compute MSE(SP) and MSE(TA). Due to the stationarity of

the increments of the Wiener input and the inclusion of A in the (new) DDM over-

load loop, 14SE(SP)/T and MSE(TA)/T are both functions of A=A0T1 and c, but

MSE(AoT ,c)/T does not depend on T. Thus, it suffices to carry out the compu-

tations for T=l only. The values obtained for the MSEs upon solving (4.2) by

Galerkin's Method (cf. the Appendix regarding the use of Projection Methods and

the Method of Reduction) converged to four significant figures when N=5.

In Figures 4 and 5 we plot MSE(SP)/T and MSE(TA)/T, respectively, as func-

tions of c for A = .75T , .gT and 1.05T;. Masry and Cambanis [14] found that

for DM of Wiener input, minAMSE(SP) = .585T and minAN.E(TA) = 1.085T, with

Sopt = L05T" for both. Our calculations with c large agree with theirs to

about three significant figures. For DDM of Wiener input, MSE(SP) attains its

minimum of .4844T for (A,c)op t = (.941T , 1.17), while MSE(TA) takes its mini-

mum value of .6698T for (A,c) = (.909T , .296). These values represent 17.1%opt

and 35.4% reductions, respectively, from DM. Note that the conjecture made at

the close of Section III has, in this instance, been justified. With the same

rationale, we expect that the improvement obtained by using DDM instead of DM

for a (first-order) Gauss-Markov input will be greater than that obtained for

an i.i.d. input but less than that obtained here.

Finally, in Figure 6 we plot MSE(TA)/T as a ,function of A =AT-; for c=O,

.3, .6, and S. Once more we find that for a good choice of c, the improvement

of DDM over DM is nearly uniform in A.

• ~~~~~~~..........-,.............. ....... . . .. .- ",-.. . ... .. - ..



V. DDM OF STATIONARY FIRST-ORDER GAUSS-MARKOV INPUT

The analysis of the response of DDM to stationary first-order Gauss-Markov

h~p. input parallels that of Slepian 1115] for DM of stationary Gaussian inputs that

have rational spectral density. As in our study of DDM of i.i.d. input, we de-

rive the limiting joint distribution of input and output. This is done by sol-

ving the system of integral equations obtained by conditioning on the preceding

output value. We then compute the asymptotic sample point and time-averaged

mean-square-errors.

The input Xt. tZO, is taken to be the stationary first-order Gauss-Markov

process that has mean zero and covariance function R(s) =E(X X ) =

A -T 
e

Throughout, we let p e -T

A. Analysis

1. The asymptotic distribution of (Y X )

We fi-rst show that the limiting joint distributions of (Y =iA,X n ,n n+

i=O,tl,*2,..., exist weakly and have densities which satisfy a (CKE) system of

integral equations (5.4), which is solved by Galerkin's Method (see the Appendix).

Le ( n) A -~
LetF. x)= PY iA,X 5x). By conditioning backwards we obtain

(~n) (X) =P(Y 1 (i-l)A,b lX 5 X) + (Y :5~)ib l xi )

=P(Yl= =(i-l)A, X n+,(i-l+c)A, X <~ !x)

+ P(Y =(i-l)A,(i-l-c)A5X 5(i-l+c)A,X >(i-l)Ax :5~x)(51
n -l n~l n 'n~l

+ P(Y -= (i+l)Ax X~ <(i+l-c)A,X n+ x)

+P(Y 1=(i.l)A, (i~l-C)A:5X +1!(i+l+c)A'Xns(i+l)A Xn <!x).

All terms on the right hand side of (5.1) are of the following form:

P(Y n*lkA,X n A,X ne B,X n+1x)= PC(XO.. 'n) k'Xn 'A Xn~lc'p n.E

n- JX ~ f 'A (x n)r ~ r0' .. orn )dx 0-dx ndx l
-~ B ~l'JkA'nn1'O"In. 0. n nl
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where Ek 9 g 1({kA1),gn_1 (X03 .*X) n-'and 4 nlis the multivariate density
k hu has densit fnfl)* n~

of (X0 b, Thusl F !n1a est n Returning to (5.1), we have

F !n) Cx) f ii n~p l >(i-l+c)A,X 5x jy (i-1),6,X =u)du
1 -- ~ ~ n-i n

(n-1)l~ i (u)P((i-i-c)L!'X =ui-~)LX :5 duiI)

+7f~ <(~-)' XY (i+)A u (5.2)

+ f ~lAfn-)(u~p(il~c X :(i+ +cA,Xn SXIY -= (i+A,Xn=udu.

(n) < r n) nBecause f. ';f =, the standard normal density, fN (x) 5 (27')~ for

Kall n and x. In Subsection II.A it was shown that F1n => F. Thus, the following

lemma implies that F.i has density f.

Lemma 3. Suppose for all n, F has density f such that fn s M < a.e. (Leb).n nn

If F n = F, then F has density f and f S M a.e. (Leb).

Proof: Let A be any Ppen set. Then for all n, F n(A) s M Leb (A), and there-

fore F(A) s M Leb (A). Hence F is absolutely continuous with respect to Lebesgue

measure, and its density f 5 M a.e. (Leb). 0

Becnus Y n-l (O'" X Xn ) and Xn is Markovian, we have (a.e)

P( ~ AXnl:xxnUYnlk)=( ~ AXn1:xxnu='O lAMv)%Cvu)du ,(5.3)

where 0denotes the conditional density of Xt+T given Xt. This is a bounded (by

one) and continuous function of u, and an absolutely continuous function of x.

Hence, substituting (5.3) into (5.2), passing to the limit in n, and differentia-

ting with respect to x, we obtain the following system of integral equations for

theasymptotic joint densities {f.) a.e.; for i=O, ±1, ±2,...,

f i X) {1 {A. (W f i 1 (u) + l B (x)57i )fj i Cu) (5.4)

+ icCx~'~ ~+1 u) + 1D CD~~) (j1 u) (Tx Iu) du,
1.ilD ~
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where

A. ((i-1+c)A,-), B. = (i-l-c)A, (i-lc)A]

Ai (-(~-)) D. = [(i+1-c)A,(il+c)A)

Note that setting c = reduces (5.4) to Eq. (23) in Slepian [15]. Of course,

in addition to (5.4) we have the boundary condition

fia.e.(54)

Let f ( ... ,f f .) Since 05f :5f., from (5.4.1) we have that

fEL(L2( ) In Subsection C of the Appendix we show that the system of inte-

gral operators A given by the right hand side of (5.4) is bounded and linear on

(LW and that f is the unique solution to g =Ag subject to Yg. = . f

is found by Galerkin's Method (see the Appendix).

2. The (mean square) sample point error.

Having found the limiting distribution of (Y ,X ),we derive in (5.5) the
n n~l

limiting distribution of (Y ,X ), which enables us to calculate the iiyptotic

mean square sample point error (5.6).

(n) ALet G. Wx P(Yn=iA,X 5x). Conditioning backwards yields
1n n

G.n(X f,, duffnjl) (u)[P(X n1cA.iX n=U) + l(u>(i-1)A)P(XT1 EB.iJX =u)]

+f [1)P(X 4EC. IX =u) + l(u%-(i4.)A)P(X, 1EDIXu1

!n) _Since G. G~C that has density gi we have

gi(x) f i- (x)[P(X n+ A ilXnx) + l(X>(i-1)A)P(Xn~l EBiIX n=x)]

i.1 n+1Ei~X

i(x)[P(X (X(-'A * (fiBAPXnie.I=)

+ fi(x)[fA.+l(x>Ci-)A) JBJ ~ d
1+ 1D]O
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and just as in (3.7) and (3.9),

MSE(SP) =1-2bl if' x gi(x)dx A A21 j2p (5.6)

3. The time-averaged mean square error.

We calculate the time-averaged mean square error

NISE(TA) 1 E[e 2(t)]dt

A
where e~t) is the limit in distribution of e n(t) = x -TtY n'i uhtesm

way as Slepian [ 1. Its expression is given in (5.10).

FortcOT, etF. (x;t) =_ P(Yn=iA, x We show first that F()(;t)
1 n nT+tx)

has weak limit F.(-;t), and that all of these distributions have densities.
1

The same steps used in the derivation of (5.2) yield

"(x-Pt) = A .X 5xIY (lA, X =u)du

1 .r" f l (U)P(X i q T.y nl (i-l)A n

+ 1i-l)A i-) () n+l eB nT+t Im =i~),n=u)du

f:nl+ (up n+1 Eili nT+t :5l n =lx i+)A ,X n=u)du

~+ l f~ i U)Pl n lo D,, xIy =(i~l)A,X =u)du. (5.7)

Recalling that Y n-1 = gn- 1 (X 0.. SX n, and Xt. ta0, is first-order Markovian,

we have (a.e.)

P(X lEE,XT 5xIly kA,X U) =P(X~, cEEXnT5t X U)

= E OT~t(w~v)Ot(v~u)dvdw. (5.8)

Since F. -n F. that has density fi from (5.7 and 8) we get

f.(x;t) + ilAB)~ 1 u !cJ f(1+l)Af 3f (u),

and so similar to (5.6) we have
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MSE (TA) (x f.(x;t)dxdt
0

I P+A2  T T2. f xf0(x;t)dxdt. (5.10)
1 1

B. Numerical Results and Discussion

The numerical analysis (cf. the Appendix regarding the use of the Method of

Reduction) is carried through for T=.51, .36 and .22 (p=.6, .7 and .8). The

values for the MSEs converged to five, four, and three significant figures,

respectively, when N=10, 13 and 15 respectively. In every case, the value of

I ceased to have an effect when (I-1)A > 3.5, i.e. when the largest output

level exceeded 3.5.

In Figures 7 and 8 we graph MSE(SP) and MSE(TA), respectively, as functions

of c for T=.51 with A= .45, .55, and .65, and for T=.36 with A=.45, .525, and

.6. For large c, our calculations for MSE(TA) appear in good agreement with

Slepian's [15]. The two sets of plots in each figure are very similar both to

each other and to their corresponding Wiener input plots. This is encouraging

in that it points to a certain uniformity in the performance of DDM for posi-

tively correlated signals.

In Tables II and III we display the minimum values of MSE(SP) and MSE(TA),

respectively, with the (optimal) parameter setting(s) that yield these minima,

for both DM and DDM. We find that MSE(SP) is reduced about 17%, while MSE(TA)

is reduced about 37%, by using optimal DDM instead of optimal DM. In every case,

the optimal value of A is smaller for DDM than for DM. Note that these results

are quite similar to those found for a Wiener input.

U~.
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A. The effects of perfect integration and step-function reconstruction on

mean-square-error and input-output synchronization.

DDM DM DDM DMRecall that when c=co, Y = Y n while when c=O, Y = Yn+l, so that the

(c=O)-DDM output is just a T-shift of the DM output for any choice of reconstruc-

tion Y based on {Y 1. This gives us
tn

MSE(TA;(c=0)-DDM) = "lir' 40 E[(X t-Y DDM) 2]dt
n

1i L T EX YDM 2 dt
"n" T 0 E[(XnT+tY(n+l)T+) 2 t

= MSE(TA; T-shifted DM),

where "lim" a = lim (a +al) since Y has period two. Hence, from Figures
n n n n n+l n

5 and 8 we see that for DM with perfect integration and step function reconstruc-

tion Yt=YnT for tc[nT,(n+l)T), about one third of MSE(TA) is due to a lag in the

tracking, rather than a distortion of the shape, of the signal. This has an

important implication regarding the use of the (time-averaged) mean square error

criterion. When one is mainly interested in preserving the shape of the input

and associates no loss to small time lags, such as in speech or image transmission,

a more appropriate measure of system performance may be

MSE(TA;I-shifted) = m "li" E[(X -Y
T0 nT+t nT~t+s

scl n

where I is an interval that corresponds to the time shifts deemed acceptable.

In Figures 9 and 10 we graph MSE(SP) and MSE(TA), respectively for DH and

T-shifted DM (i.e. DDM with c= and c=O) with perfect integration and, in the

time-averaged case, step-function reconstruction, of stationary first-order

Gauss-Markov input. We see that while MSE(SP; T-shifted DM) < MSE(SP;DM) only

DMwhen A is small (so small that Y cannot "keep up" with X ), MSE(TA; T-shifted DM)n n
DM< MSE(TA;DM) uniformly in A, i.e. Yt lags behind Xt equally for all A. Thus,
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DM
the lag in the tracking of Xt by y here is mainly a result of the use of the

t

step-function reconstruction.

It is clear that MSE(SP) does not depend on the reconstruction and measures

only what may be called the "encoding-decoding error" of the system, while

MSE(TA) measures both the encoding-decoding error and the "reconstruction error."

In general, the reconstruction cannot compensate for deficiencies in encoding-

decoding. Specifically, given different "modulations" Yn, Zn of Xn, n=0,1,2,...,

and using the same reconstruction for both Y t and Zt, if MSEy(SP) < MSEZ(SP),

we expect that MSEy(TA) < MSEz(TA). However, one expects that, in most cases,

MSE(TA)-MSE(SP), though positive, can be made small by using more sophisticated

reconstructions, which have higher complexity and require greater memory. For

example, for a Wiener input Wt, tO , suppose we are given the perfect modula-
SF =Ynan

tion Yn = WnT n=O,1,2,..., the step-function reconstruction YnTt Y, and
LI t t , otr0T

the linearly interpolated reconstruction YnT = (I- T)Y + . Ynl for troT).
nT+t T n T n+l

Although in this case MSE(SP) = 0, it is easily verified that MSE(TA:SF) = T/2

. and MSE(TA:LI) = T/6. When the performance of the reconstruction is of secondary

interest to that of the modulator, MSE(SP) is the more appropriate criterion.

B. Unification of results.

The inputs analyzed in Sections III-V have samples Xn, n=0,l,2,..., that

may be viewed as generated by the first-order autoregressive sequence Xn+l=

pX + a In where 0<p0l, O<c l, and {I are i.i.d. N(0,1). In Section III
n n+11 n

we have p=O, a=l; in Section IV we have p=l, a=l; in Section V we have O<p<l,

L = (1-P2  In Figure 11 we plot, for DH and DDM with perfect integration,

-2 -2a min MSE(SP) and a min ?.,SE(SP), respectively, as functions of p.

Dividing by a2 "standardizes" the MSE with respect to the increment power. The

optimal "standardized" performance of both DM and DDM is seen to vary only

slightly with p, and the imorovement attainable by using nflM instead of Ml1 to

be nearly uniform in p.
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Arnstein [1] has analyzed DM with matched integration when a=l, and his

plot of minAMSE(SP) as a function of P in Figure 4.2 is included inFigure 11.

We see that for DM of first order autoregressive inputs, the loss incurred by

using the perfect instead of the matched integrator is less than 10% when p > .8,

and vanishes as p 1 1. In addition, we note the following: for DDM with matched

integration, when p = 0, a = 1, min(A,c) MSE(SP) = .3634 (at (A,c)=(.798,-); cf.

Fine [5]), and when p=l, a=l, min A,c. MSE(SP) = .4844 (cf. Subsection IV.C).

For DDM with matched integration, we expect that a plot of a min(Ac) MSE(SP)

versus p will resemble Arnstein's [1;Figure 4.2] matched integration DM curve and

have .3634 and .4844 (instead of .585) as limits at zero and one, respectively.

A conjecture for this curve is also included in Figure 11.

In Figure 12 we graph A opt/a (with respect to MSE(SP) as a function of p for

DM and DDM with perfect integration. Note that A /a varies only slightlyopt

with p = (1-a2) and thus also with a; it is encouraging that the optimal A has

a linear relation with the increment scale. The reduction in Aopt/a for DDM

from DM increases monotonically from 3% to 10% as p goes from zero to one.

Comparing the DM curve with Arnstein's [l;Figure 4.1] plot of A versus p for
opt

DM with matched integration when a=l, included in Figure 12, reveals that for

0<<p<l the matched integrator also permits the use of slightly smaller A. This

is because with the matched integrator the random variables to be (binary)

quantized, i.e. the predictive errors, are in general smaller, and because the

matched integrator itself compensates for the more common type of slope over-

loads, those during which [Xt1 0. Using the matched integrator in DDM should

produce a similar reduction.

In Figure 13 we graph cop t (with respect to MSE(SP)) as a function of p. As

expected, the more positive the correlation of the samples, the more useful the

new DDM overload loop, and hence the smaller the optimal value of c. It is in-

teresting that the plot is highly linear.
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APPENDIX. THE SOLUTION OF INFINITE LINEAR SYSTEMS

In each of our analyses, we encounter the problem of solving an infinite

linear system. In our first analysis, we show that the joint distributions

{Je(.)} may be expressed in terms of the constants {pi,qi } and the input dis-

tribution H(-) (cf. (3.1)). We then derive an infinite system of homogeneous

linear equations in these constants (cf. (3.2-5)) and a normalizing "boundary"

condition (cf. (3.6)). This infinite linear system is solved by the Method of

Reduction. This involves setting pi = 0 = qi for all i > I, solving the

resulting finite system, and taking as the solution for the infinite system the

limit of the finite "approximating" solution as I t . (See Kantorovich and

Krylov [11] for more on the Method of Reduction.) In the first subsection

below we show why this may be done.

In our last two analyses, the desired (joint) density is shown to satisfy

a (system of) linear integral operator equation(s) of the second kind (cf.

(4.2) and (5.4)) as well as a normalizing boundary equation (cf. (4.2.1) and

(5.4.1)), and to belong to a Hilbert space. Henceforth we let f denote the

desired (joint) density;

g = Ag (A.1)

represent the (system of) integral operator equation(s) ((4.2) or (5.4)) for

which, subject to a given normalization, f is the unique soluion; H be the

Hilbert space to which f belongs; and {e be a complete and orthonormal
n

system in H. Since fcH, it has Fourier expansion

f(') = Ifnen() , (A.2)

where the Fourier coefficients are given by

f= <fen>H

n n
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Substituting (A.2) into (A.1) and taking inner products (in H) on both sides

of the resulting equation yields an infinite system of linear equations in the

{fn), which is solved by the Method of Reduction. This procedure is known as

Galerkin's Method, one of many so-called Projection Methods for the solution of

(integral) operator equations. (For more on these methods see Krasnoselskii

et.al. [13] and Zabreyko et.al [16].) In Subsections B and C below we show that

the (system of) integral operator(s) A is bounded on H. It then follows (cf.

Gerr [7] and Gerr and Cambanis [6]) that Galerkin's Method may be used.

A. Majorant Systems and the Method of Reduction

r
We first note several properties of the infinite system of linear equations

obtained in the analysis of DDM of i.i.d. input. It is composed of an infinite

system of homogeneous linear equations, given by (3.2 and 3), in the unknowns

{pi,qi}c=_0 , supplemented by the non-homogeneous normalization (3.6). Thus

it has the following form:

x. = Jai x i = 0, ±1, ±2,..., (A.3.1)
J

xi =b ,(A.3.2)

where b = Ji(piqi) = 1.5. Using (3.5) appropriately in (3.2 and 3) results in

0 < ai 5 1 for all i,j, with a.. 0 for at most four values of j for all i. As

a shorthand we write x = Ax for (A.3.1) and define

= "," ,-q-lpq0,plql'".. )T

Theorem A.1. If TE cZ1 satisfies (A.3.1), then z = (1.5) "1 (Iizi)p. Thus

(A.1) has unique solution in Z1"

Proof: Let K denote the positive cone in tI, i.e. K 1 {x c ti; xi k 0 all i,
1'(ie. ) _> {x fro al i)ia

and let y c K. In Section II.C. it was shown that F (n) => F. from any initial
1 1

state and so, in particular, p(n) pi and qin qi" Thus ny -. S 1)-ll
1 n 1 1 n
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pointwise. As z £ t. may be written 7 - 1-z 2- where EI 2 c K, we have

that Anz (1.5) (Cizi)V pointwise, with zi 1 I < c . Since A1 =

Anz = T for all n, hence - = (l.5)-( izi).

This implies that there is a single linear dependency in A. If we sum the

equations (A.3.1) over i we obtain the trivial identity 1ixi = 1.xi . Thus the

system

xi = ljaiX., i ± 2,..., (A.4.1)

x= 1, (A.4.2)

has as its unique solution. It now follows that the system

xi = J.jaijXj, i = ±, ±2,..., (A.5.1)

x0 =1Ix0= ,

has as its unique solution = (/P0 (having identified x0 with p 0 
> 0). In

Theorem A.2 below we show that - may be found by the Method of Reduction so that

finally f = po0  = 1.511I -l q

Theorem A.2. The system (A.S) can be solved by the Method of Reduction.

Proof: In general, an infinite system of linear equations in the infinite set

of unknowns {xi10_ may be written as
1 i=-00

xi = I.a. .x. + b , i=0, ±1, ±2,... (A.6)

The system of equations

X. = JjA i X. .+ B, i=0, ±1, ±2,

is "Marjorant for the system (A.6)" when for all i and j, laij I S Aij and

Ibi i Bi. The system (A.5) is its own majorant, and by Theorem A.1, has unique
solution q- c K, the positive k I cone. The result then follows from Theorems I-IV

on pages 20-26 in Kantorovich and Krylov [11]. El
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B. DDM of Wiener Process Input

We prove below that the integral operator A given by the right hand side

of (4.2) is bounded on L 2(Leb). To prove this it suffices to show that the

integral operator B defined by

[Bf(x = ~x(c-) OT (x.A-u)f(u)du (A.7)

is bounded linear operator on L (Leb), the other terms being treated similar-

ly.

Clearly, B is linear. From (A.7) we have

:5_ rf:T (x+A- u)CT(x+A-v)f(u)f(v)Idudvdx

- cfODCO4J2T(u v) Iff(u) f(v) Idudv

c 2 T( f 112

- = 1111 2 
.(A.8)

Hence B is bounded, with JIB1f 1.

It is easily shown that B is not compact on L (Leb). Similar to (A.8) we
2

have IIBf112  t t ~(ILv c.&) 0 (u-v)f(u)f(v)dudv. Putting fn (x)
w

l(n :5 x 5 n +' 1), we see that although f n - -0 in L 2(Leb),

IBf 112 = nn+l + v -c) 2 (u-v)dudv

n f~fO 2TuV)dudv > 0

and so Bf -Y4. 0 in L (Leb).
n2

As a final consequence of this subsection we have that the integral opera-

tor D defined by



A.5

[Df] (x) = toT(X-u) f(u)du

is bounded, with fl DIt < 1, but not compact, on L2 (Leb).

C. DDM of Stationary First-order Gauss-Markov Input

We prove below that the system of integral operators A given by the right

hand side of (5.4) is a bounded linear operator on H = Z 2 (L2 (o')). Note that

in this case, since every - c H is integrable, the fact that f C H is the

unique integrable solution to (5.4) implies that 1 is a simple eigenvalue of A.

Let 9 c H. Using Mehler's Formula

oT(xlu) = O(x) I 0nHn(x)H n(u)
n=O

where H (.) is the Hermite polynomial of order n, from (5.4) we have
n

g 
2

= 8 1 fff f{gi(u)gi(v) +lgi+l(u)gil(V) }r(xvU)Ir(X}V) -(x)dudvdx

i= "0 n=0

= 8 . 2<g i Hn€ >2, <g~[ n >[il ' H ¢ >
2n

* .. i=-w n=O

: 16 111 2

where the inner product <*,*> is in L2 (o I. Thus A is a bounded linear opera-

tor on Z(L -))

2 2

"'" -''- -""". '."-"- " '."' ..". - , " " •" " " " " . " '" - ." " • . " " -." ... " "" - - . - ', "
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TABLE I

Output Level Probabilities

DDM w/(A,c) DM w/Aopt

PO .3837S0 .384036

P1  .246477 .246382

P2  .058091 .057994

P3  .003522 .003618

P4  .000034 .000038

P5  .00000003 .00000004

TABLE II

minMSE(SP) and Optimal Parameters of DM and DDM

DM DDM

f minMSE(SP) A minMSE(SP) (AC)opt

.6 .357 .72 .296 (.64,1.57)

.7 .287 .66 .237 (.59,1.47)

.8 .201 .57 .166 (.52,1.37)

TABLE III

minMSE(TA) and Optimal Parameters of DM and DDM

DM DDM

f minMSE(SP) A minMSE(TA) (AC)
--opt -opt

.6 .675 .57 .430 (.56,.42)

.7 .545 .57 .338 (.54,.37)

.8 .380 .53
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